
shot-scraper documentation
Release 1.1.1

Simon Willison

Jan 30, 2023

CONTENTS

1 Installation 3
1.1 shot-scraper install --help . 3

2 Taking a screenshot 5
2.1 Adjusting the browser width and height . 5
2.2 Screenshotting a specific area with CSS selectors . 5
2.3 Specifying elements using JavaScript filters . 6
2.4 Waiting for a delay . 6
2.5 Waiting until a specific condition . 7
2.6 Executing custom JavaScript . 7
2.7 Using JPEGs instead of PNGs . 7
2.8 Retina images . 7
2.9 Interacting with the page . 8
2.10 Logging all requests . 8
2.11 Taking screenshots of local HTML files . 9
2.12 Tips for executing JavaScript . 9
2.13 Viewing console.log() output . 10
2.14 shot-scraper shot --help . 10

3 Websites that need authentication 13
3.1 shot-scraper auth --help . 13

4 Taking multiple screenshots 15
4.1 shot-scraper multi --help . 17

5 Scraping pages using JavaScript 19
5.1 Running more than one statement . 20
5.2 Using async/await . 20
5.3 Running JavaScript from a file . 20
5.4 Using this for automated tests . 21
5.5 Example: Extracting page content with Readability.js . 21
5.6 shot-scraper javascript –help . 22

6 Saving a web page to PDF 23
6.1 shot-scraper pdf --help . 23

7 Dumping the HTML of a page 25
7.1 Retrieving the HTML for a specific element . 25
7.2 shot-scraper html --help . 25

8 Dumping out an accessibility tree 27

i

8.1 shot-scraper accessibility --help . 27

9 Using shot-scraper with GitHub Actions 29
9.1 shot-scraper-template . 29
9.2 Building a workflow from scratch . 29
9.3 Optimizing PNGs using Oxipng . 30

10 Contributing 31
10.1 Documentation . 31
10.2 Tweeting the release notes . 32

11 shot-scraper 33
11.1 Documentation . 33
11.2 Get started with GitHub Actions . 33
11.3 Quick installation . 33
11.4 Taking your first screenshot . 34
11.5 Examples . 34

ii

shot-scraper documentation, Release 1.1.1

A command-line utility for taking automated screenshots of websites

Quick start:

pip install shot-scraper
shot-scraper install
shot-scraper https://github.com/simonw/shot-scraper -h 900

Produces this screenshot in a file called github-com-simonw-shot-scraper.png:

Contents

CONTENTS 1

shot-scraper documentation, Release 1.1.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

Install this tool using pip:

pip install shot-scraper

This tool depends on Playwright, which first needs to install its own dedicated Chromium browser.

Run shot-scraper install once to install that:

% shot-scraper install
Downloading Playwright build of chromium v965416 - 117.2 Mb [====================] 100%␣
→˓0.0s
Playwright build of chromium v965416 downloaded to /Users/simon/Library/Caches/ms-
→˓playwright/chromium-965416
Downloading Playwright build of ffmpeg v1007 - 1.1 Mb [====================] 100% 0.0s
Playwright build of ffmpeg v1007 downloaded to /Users/simon/Library/Caches/ms-playwright/
→˓ffmpeg-1007

If you want to use other browsers such as Firefox you should install those too:

% shot-scraper install -b firefox

1.1 shot-scraper install --help

Full --help for the shot-scraper install command:

Usage: shot-scraper install [OPTIONS]

Install the Playwright browser needed by this tool.

Usage:

shot-scraper install

Or for browsers other than the Chromium default:

shot-scraper install -b firefox

Options:
-b, --browser [chromium|firefox|webkit|chrome|chrome-beta]

(continues on next page)

3

shot-scraper documentation, Release 1.1.1

(continued from previous page)

Which browser to install
--help Show this message and exit.

4 Chapter 1. Installation

CHAPTER

TWO

TAKING A SCREENSHOT

To take a screenshot of a web page and write it to datasette-io.png run this:

shot-scraper https://datasette.io/

If a file called datasette-io.png already exists the filename datasette-io.1.png will be used instead.

You can use the -o option to specify a filename:

shot-scraper https://datasette.io/ -o datasette.png

Use -o - to write the PNG image to standard output:

shot-scraper https://datasette.io/ -o - > datasette.png

If you omit the protocol http:// will be added automatically, and any redirects will be followed:

shot-scraper datasette.io -o datasette.png

2.1 Adjusting the browser width and height

The browser window used to take the screenshots defaults to 1280px wide and 780px tall.

You can adjust these with the --width and --height options (-w and -h for short):

shot-scraper https://datasette.io/ -o small.png --width 400 --height 800

If you provide both options, the resulting screenshot will be of that size. If you omit --height a full page length
screenshot will be produced (the default).

2.2 Screenshotting a specific area with CSS selectors

To take a screenshot of a specific element on the page, use --selector or -s with its CSS selector:

shot-scraper https://simonwillison.net/ -s '#bighead'

This produces simonwillison-net.png containing this image:

When using --selector the height and width, if provided, will set the size of the browser window when the page is
loaded but the resulting screenshot will still be the same dimensions as the element on the page.

5

shot-scraper documentation, Release 1.1.1

You can pass --selectormultiple times. The resulting screenshot will cover the smallest area of the page that contains
all of the elements you specified, for example:

shot-scraper https://simonwillison.net/ \
-s '#bighead' -s .overband \
-o bighead-multi-selector.png

To capture a rectangle around every element that matches a CSS selector, use --selector-all:

shot-scraper https://simonwillison.net/ \
--selector-all '.day' \
-o just-the-day-boxes.png

You can add --padding 20 to add 20px of padding around the elements when the shot is taken.

2.3 Specifying elements using JavaScript filters

The --js-selector and --js-selector-all options can be used to use JavaScript expressions to select elements
that cannot be targetted just using CSS selectors.

The options should be passed JavaScript expression that operates on the el variable, returning true if that element
should be included in the screenshot selection.

To take a screenshot of the first paragraph on the page that contains the text “shot-scraper” you could run the following:

shot-scraper https://github.com/simonw/shot-scraper \
--js-selector 'el.tagName == "P" && el.innerText.includes("shot-scraper")'

The el.tagName == "P" part is needed here because otherwise the <html> element on the page will be the first to
match the expression.

The generated JavaScript that will be executed on the page looks like this:

Array.from(document.getElementsByTagName('*')).find(
el => el.tagName == "P" && el.innerText.includes("shot-scraper")

).classList.add("js-selector-a1f5ba0fc4a4317e58a3bd11a0f16b96");

The --js-selector-all option will select all matching elements, in a similar fashion to the --selector-all option
described above.

2.4 Waiting for a delay

Sometimes a page will not have completely loaded before a screenshot is taken. You can use --wait X to wait the
specified number of milliseconds after the page load event has fired before taking the screenshot:

shot-scraper https://simonwillison.net/ --wait 2000

6 Chapter 2. Taking a screenshot

shot-scraper documentation, Release 1.1.1

2.5 Waiting until a specific condition

In addition to waiting a specific amount of time, you can also wait until a JavaScript expression returns true using the
--wait-for expression option.

This example takes the screenshot the moment a <div> with an ID of content becomes available in the DOM:

shot-scraper https://.../ \
--wait-for 'document.querySelector("div#content")'

2.6 Executing custom JavaScript

You can use custom JavaScript to modify the page after it has loaded (after the ‘onload’ event has fired) but before the
screenshot is taken using the --javascript option:

shot-scraper https://simonwillison.net/ \
-o simonwillison-pink.png \
--javascript "document.body.style.backgroundColor = 'pink';"

2.7 Using JPEGs instead of PNGs

Screenshots default to PNG. You can save as a JPEG by specifying a -o filename that ends with .jpg.

You can also use --quality X to save as a JPEG with the specified quality, in order to reduce the filesize. 80 is a
good value to use here:

shot-scraper https://simonwillison.net/ \
-h 800 -o simonwillison.jpg --quality 80

% ls -lah simonwillison.jpg
-rw-r--r--@ 1 simon staff 168K Mar 9 13:53 simonwillison.jpg

2.8 Retina images

The --retina option sets a device scale factor of 2. This means that an image will have its resolution effectively
doubled, emulating the display of images on retina or higher pixel density screens.

shot-scraper https://simonwillison.net/ -o simon.png \
--width 400 --height 600 --retina

This example will produce an image that is 800px wide and 1200px high.

2.5. Waiting until a specific condition 7

https://en.wikipedia.org/wiki/Retina_display

shot-scraper documentation, Release 1.1.1

2.9 Interacting with the page

Sometimes it’s useful to be able to manually interact with a page before the screenshot is captured.

Add the --interactive option to open a browser window that you can interact with. Then hit <enter> in the terminal
when you are ready to take the shot and close the window.

shot-scraper https://simonwillison.net/ -o after-interaction.png \
--height 800 --interactive

This will output:

Hit <enter> to take the shot and close the browser window:
And after you hit <enter>...

Screenshot of 'https://simonwillison.net/' written to 'after-interaction.png'

2.10 Logging all requests

It can sometimes be useful to see a list of all of the requests that the browser made while it was rendering a page.

Use --log-requests to output newline-delimited JSON representing each request, including requests for images and
other assets.

Pass - to output the list to standard output, or use a filename to write to a file on disk.

The output looks like this:

% shot-scraper http://datasette.io/ --log-requests -
{"method": "GET", "url": "http://datasette.io/", "status": 302, "size": null, "timing": {
→˓"startTime": 1663211674984.7068, "domainLookupStart": 0.698, "domainLookupEnd": 1.897,
→˓"connectStart": 1.897, "secureConnectionStart": -1, "connectEnd": 18.726, "requestStart
→˓": 18.86, "responseStart": 99.75, "responseEnd": 101.75000000162981}}
{"method": "GET", "url": "https://datasette.io/", "status": 200, "size": 34592, "timing
→˓": {"startTime": 1663211675085.51, "domainLookupStart": 0.187, "domainLookupEnd": 0.
→˓197, "connectStart": 0.197, "secureConnectionStart": 15.719, "connectEnd": 63.854,
→˓"requestStart": 64.098, "responseStart": 390.231, "responseEnd": 399.268}}
{"method": "GET", "url": "https://datasette.io/static/site.css", "status": 200, "size":␣
→˓3952, "timing": {"startTime": 1663211675486.027, "domainLookupStart": -1,
→˓"domainLookupEnd": -1, "connectStart": -1, "secureConnectionStart": -1, "connectEnd": -
→˓1, "requestStart": 0.408, "responseStart": 99.407, "responseEnd": 100.433}}
...

Note that the size field here will be the size of the response in bytes, but in some circumstances this will not be
available and it will be returned as "size": null.

8 Chapter 2. Taking a screenshot

shot-scraper documentation, Release 1.1.1

2.11 Taking screenshots of local HTML files

You can pass the path to an HTML file on disk to take a screenshot of that rendered file:

shot-scraper index.html -o index.png

CSS and images referenced from that file using relative paths will also be included.

2.12 Tips for executing JavaScript

If you are using the --javascript option to execute code, that code will be executed after the page load event has
fired but before the screenshot is taken.

You can use that code to do things like hide or remove specific page elements, click on links to open menus, or even
add annotations to the page such as this pink arrow example.

This code hides any element with a [data-ad-rendered] attribute and the element with id="ensNotifyBanner":

document.querySelectorAll(
'[data-ad-rendered],#ensNotifyBanner'

).forEach(el => el.style.display = 'none')

You can execute that like so:

shot-scraper https://www.latimes.com/ -o latimes.png --javascript "
document.querySelectorAll(

'[data-ad-rendered],#ensNotifyBanner'
).forEach(el => el.style.display = 'none')
"

In some cases you may need to add a pause that executes during your custom JavaScript before the screenshot is taken
- for example if you click on a button that triggers a short fading animation.

You can do that using the following pattern:

new Promise(takeShot => {
// Your code goes here
// ...
setTimeout(() => {
// Resolving the promise takes the shot
takeShot();

}, 1000);
});

If your custom code defines a Promise, shot-scraperwill wait for that promise to complete before taking the screen-
shot. Here the screenshot does not occur until the takeShot() function is called.

2.11. Taking screenshots of local HTML files 9

https://simonwillison.net/2022/Mar/10/shot-scraper/#a-complex-example

shot-scraper documentation, Release 1.1.1

2.13 Viewing console.log() output

Almost all of the shot-scraper commands accept a --log-console option, which will cause them to output any
calls to console.log() to standard error while the command is running.

This includes both console.log() calls in the existing page JavaScript, as well as any calls to that method that you
include in your own custom JavaScript.

For example, running --log-console while taking a screenshot of the Facebook homepage will show this warning
message, which Facebook logs to the developer tools console to help protect people from social engineering attacks:

% shot-scraper shot facebook.com --log-console

.d8888b. 888 888
d88P Y88b 888 888
Y88b. 888 888 This is a browser feature intended for
"Y888b. 888888 .d88b. 88888b. 888 developers. If someone told you to copy-paste

"Y88b. 888 d88""88b 888 "88b 888 something here to enable a Facebook feature
"888 888 888 888 888 888 Y8P or "hack" someone's account, it is a

Y88b d88P Y88b. Y88..88P 888 d88P scam and will give them access to your
"Y8888P" "Y888 "Y88P" 88888P" 888 Facebook account.

888
888
888

See https://www.facebook.com/selfxss for more information.

Screenshot of 'http://facebook.com' written to 'facebook-com.png'

2.14 shot-scraper shot --help

Full --help for this command:

Usage: shot-scraper shot [OPTIONS] URL

Take a single screenshot of a page or portion of a page.

Usage:

shot-scraper www.example.com

This will write the screenshot to www-example-com.png

Use "-o" to write to a specific file:

shot-scraper https://www.example.com/ -o example.png

You can also pass a path to a local file on disk:

shot-scraper index.html -o index.png

Using "-o -" will output to standard out:
(continues on next page)

10 Chapter 2. Taking a screenshot

shot-scraper documentation, Release 1.1.1

(continued from previous page)

shot-scraper https://www.example.com/ -o - > example.png

Use -s to take a screenshot of one area of the page, identified using one or
more CSS selectors:

shot-scraper https://simonwillison.net -s '#bighead'

Options:
-a, --auth FILENAME Path to JSON authentication context file
-w, --width INTEGER Width of browser window, defaults to 1280
-h, --height INTEGER Height of browser window and shot - defaults

to the full height of the page
-o, --output FILE
-s, --selector TEXT Take shot of first element matching this CSS

selector
--selector-all TEXT Take shot of all elements matching this CSS

selector
--js-selector TEXT Take shot of first element matching this JS

(el) expression
--js-selector-all TEXT Take shot of all elements matching this JS

(el) expression
-p, --padding INTEGER When using selectors, add this much padding in

pixels
-j, --javascript TEXT Execute this JS prior to taking the shot
--retina Use device scale factor of 2
--quality INTEGER Save as JPEG with this quality, e.g. 80
--wait INTEGER Wait this many milliseconds before taking the

screenshot
--wait-for TEXT Wait until this JS expression returns true
--timeout INTEGER Wait this many milliseconds before failing
-i, --interactive Interact with the page in a browser before

taking the shot
--devtools Interact mode with developer tools
--log-requests FILENAME Log details of all requests to this file
--log-console Write console.log() to stderr
-b, --browser [chromium|firefox|webkit|chrome|chrome-beta]

Which browser to use
--user-agent TEXT User-Agent header to use
--reduced-motion Emulate 'prefers-reduced-motion' media feature
--fail Fail with an error code if a page returns an

HTTP error
--skip Skip pages that return HTTP errors
--help Show this message and exit.

2.14. shot-scraper shot --help 11

shot-scraper documentation, Release 1.1.1

12 Chapter 2. Taking a screenshot

CHAPTER

THREE

WEBSITES THAT NEED AUTHENTICATION

If you want to take screenshots of a site that has some form of authentication, you will first need to authenticate with
that website manually.

You can do that using the shot-scraper auth command:

shot-scraper auth https://datasette-auth-passwords-demo.datasette.io/-/login auth.json

(For this demo, use username = root and password = password!)

This will open a browser window on your computer showing the page you specified.

You can then sign in using that browser window - including 2FA or CAPTCHAs or other more complex form of
authentication.

When you are finished, hit <enter> at the shot-scraper command-line prompt. The browser will close and the
authentication credentials (usually cookies) for that browser session will be written out to the auth.json file.

To take authenticated screenshots you can then use the -a or --auth options to point to the JSON file that you created:

shot-scraper https://datasette-auth-passwords-demo.datasette.io/ \
-a auth.json -o authed.png

3.1 shot-scraper auth --help

Full --help for shot-scraper auth:

Usage: shot-scraper auth [OPTIONS] URL CONTEXT_FILE

Open a browser so user can manually authenticate with the specified site, then
save the resulting authentication context to a file.

Usage:

shot-scraper auth https://github.com/ auth.json

Options:
-b, --browser [chromium|firefox|webkit|chrome|chrome-beta]

Which browser to use
--user-agent TEXT User-Agent header to use
--devtools Open browser DevTools
--log-console Write console.log() to stderr
--help Show this message and exit.

13

shot-scraper documentation, Release 1.1.1

14 Chapter 3. Websites that need authentication

CHAPTER

FOUR

TAKING MULTIPLE SCREENSHOTS

You can configure multiple screenshots using a YAML file. Create a file called shots.yml that looks like this:

- output: example.com.png
url: http://www.example.com/

- output: w3c.org.png
url: https://www.w3.org/

Then run the tool like so:

shot-scraper multi shots.yml

This will create two image files, www-example-com.png and w3c.org.png, containing screenshots of those two
URLs.

Use - to pass in YAML from standard input:

echo "- url: http://www.example.com" | shot-scraper multi -

If you run the tool with the -n or --no-clobber option any shots where the output file aleady exists will be skipped.

You can specify a subset of screenshots to take by specifying output files that you would like to create. For example,
to take just the shots of one.png and three.png that are defined in shots.yml run this:

shot-scraper multi shots.yml -o one.png -o three.png

The url: can be set to a path to a file on disk as well:

- output: index.png
url: index.html

Use --retina to take all screenshots at retina resolution instead, doubling the dimensions of the files:

shot-scraper multi shots.yml --retina

To take a screenshot of just the area of a page defined by a CSS selector, add selector to the YAML block:

- output: bighead.png
url: https://simonwillison.net/
selector: "#bighead"

You can pass more than one selector using a selectors: list. You can also use padding: to specify additional
padding:

15

shot-scraper documentation, Release 1.1.1

- output: bighead-multi-selector.png
url: https://simonwillison.net/
selectors:
- "#bighead"
- .overband
padding: 20

You can use selector_all: to capture every element matching a selector, or selectors_all: to pass a list of such
selectors:

- output: selectors-all.png
url: https://simonwillison.net/
selectors_all:
- .day
- .entry:nth-of-type(1)
padding: 20

The --js-selector and --js-selector-all options can be provided using the js_selector:, js_selectors:,
js_selector_all: and js_selectors_all: keys:

- output: js-selector-all.png
url: https://github.com/simonw/shot-scraper
js_selector: |-
el.tagName == "P" && el.innerText.includes("shot-scraper")

padding: 20

To execute JavaScript after the page has loaded but before the screenshot is taken, add a javascript key:

- output: bighead-pink.png
url: https://simonwillison.net/
selector: "#bighead"
javascript: |
document.body.style.backgroundColor = 'pink'

You can include desired height, width, quality, wait and wait_for options on each item as well:

- output: simon-narrow.jpg
url: https://simonwillison.net/
width: 400
height: 800
quality: 80
wait: 500
wait_for: document.querySelector('#bighead')

16 Chapter 4. Taking multiple screenshots

shot-scraper documentation, Release 1.1.1

4.1 shot-scraper multi --help

Full --help for this command:

Usage: shot-scraper multi [OPTIONS] CONFIG

Take multiple screenshots, defined by a YAML file

Usage:

shot-scraper multi config.yml

Where config.yml contains configuration like this:

- output: example.png
url: http://www.example.com/

https://shot-scraper.datasette.io/en/stable/multi.html

Options:
-a, --auth FILENAME Path to JSON authentication context file
--retina Use device scale factor of 2
--timeout INTEGER Wait this many milliseconds before failing
-n, --no-clobber Skip images that already exist
-o, --output TEXT Just take shots matching these output files
-b, --browser [chromium|firefox|webkit|chrome|chrome-beta]

Which browser to use
--user-agent TEXT User-Agent header to use
--reduced-motion Emulate 'prefers-reduced-motion' media feature
--log-console Write console.log() to stderr
--fail Fail with an error code if a page returns an

HTTP error
--skip Skip pages that return HTTP errors
--help Show this message and exit.

4.1. shot-scraper multi --help 17

shot-scraper documentation, Release 1.1.1

18 Chapter 4. Taking multiple screenshots

CHAPTER

FIVE

SCRAPING PAGES USING JAVASCRIPT

The shot-scraper javascript command can be used to execute JavaScript directly against a page and return the
result as JSON.

This command doesn’t produce a screenshot, but has interesting applications for scraping.

To retrieve a string title of a document:

shot-scraper javascript https://datasette.io/ "document.title"

This returns a JSON string:

"Datasette: An open source multi-tool for exploring and publishing data"

To return a raw string instead, use the -r or --raw options:

shot-scraper javascript https://datasette.io/ "document.title" -r

Output:

Datasette: An open source multi-tool for exploring and publishing data

To return a JSON object, wrap an object literal in parenthesis:

shot-scraper javascript https://datasette.io/ "({
title: document.title,
tagline: document.querySelector('.tagline').innerText

})"

This returns:

{
"title": "Datasette: An open source multi-tool for exploring and publishing data",
"tagline": "An open source multi-tool for exploring and publishing data"

}

19

shot-scraper documentation, Release 1.1.1

5.1 Running more than one statement

You can use () => { ... } function syntax to run multiple statements, returning a result at the end of your function.

This example raises an error if no paragraphs are found.

shot-scraper javascript https://www.example.com/ "
() => {
var paragraphs = document.querySelectorAll('p');
if (paragraphs.length == 0) {
throw 'No paragraphs found';

}
return Array.from(paragraphs, el => el.innerText);

}"

5.2 Using async/await

You can pass an async function if you want to use await, including to import modules from external URLs. This
example loads the Readability.js library from Skypack and uses it to extract the core content of a page:

shot-scraper javascript \
https://simonwillison.net/2022/Mar/14/scraping-web-pages-shot-scraper/ "

async () => {
const readability = await import('https://cdn.skypack.dev/@mozilla/readability');
return (new readability.Readability(document)).parse();

}"

To use functions such as setInterval(), for example if you need to delay the shot for a second to allow an animation
to finish running, return a promise:

shot-scraper javascript datasette.io "
new Promise(done => setInterval(
() => {
done({
title: document.title,
tagline: document.querySelector('.tagline').innerText

});
}, 1000

));"

5.3 Running JavaScript from a file

You can also save JavaScript to a file and execute it like this:

shot-scraper javascript datasette.io -i script.js

Or read it from standard input like this:

echo "document.title" | shot-scraper javascript datasette.io

20 Chapter 5. Scraping pages using JavaScript

https://github.com/mozilla/readability
https://www.skypack.dev/

shot-scraper documentation, Release 1.1.1

5.4 Using this for automated tests

If a JavaScript error occurs, a stack trace will be written to standard error and the tool will terminate with an exit code
of 1.

This can be used to run JavaScript tests in continuous integration environments, by taking advantage of the throw
"error message" JavaScript statement.

This example uses GitHub Actions:

- name: Test page title
run: |-

shot-scraper javascript datasette.io "
if (document.title != 'Datasette') {

throw 'Wrong title detected';
}"

5.5 Example: Extracting page content with Readability.js

Readability.js is “a standalone version of the readability library used for Firefox Reader View.” It lets you parse the
content on a web page and extract just the title, content, byline and some other key metadata.

The following recipe imports the library from the Skypack CDN, runs it against the current page and returns the results
to the console as JSON:

shot-scraper javascript https://simonwillison.net/2022/Mar/24/datasette-061/ "
async () => {
const readability = await import('https://cdn.skypack.dev/@mozilla/readability');
return (new readability.Readability(document)).parse();

}"

The output looks like this:

{
"title": "Datasette 0.61: The annotated release notes",
"byline": null,
"dir": null,
"lang": "en-gb",
"content": "<div id=\"readability-page-1\" class=\"page\"><div id=\"primary\">\n\n\n\

→˓n\n<p>I released ... <this is a very long string>",
"length": 8625,
"excerpt": "I released Datasette 0.61 this morning\u2014closely followed by 0.61.1␣

→˓to fix a minor bug. Here are the annotated release notes. In preparation for Datasette␣
→˓1.0, this release includes two potentially \u2026",
"siteName": null

}

See Extracting web page content using Readability.js and shot-scraper for more.

5.4. Using this for automated tests 21

https://docs.github.com/en/actions/quickstart
https://github.com/mozilla/readability
https://www.skypack.dev/
https://til.simonwillison.net/shot-scraper/readability

shot-scraper documentation, Release 1.1.1

5.6 shot-scraper javascript –help

Full --help for this command:

Usage: shot-scraper javascript [OPTIONS] URL [JAVASCRIPT]

Execute JavaScript against the page and return the result as JSON

Usage:

shot-scraper javascript https://datasette.io/ "document.title"

To return a JSON object, use this:

"({title: document.title, location: document.location})"

To use setInterval() or similar, pass a promise:

"new Promise(done => setInterval(
() => {
done({
title: document.title,
h2: document.querySelector('h2').innerHTML

});
}, 1000

));"

If a JavaScript error occurs an exit code of 1 will be returned.

Options:
-i, --input FILENAME Read input JavaScript from this file
-a, --auth FILENAME Path to JSON authentication context file
-o, --output FILENAME Save output JSON to this file
-r, --raw Output JSON strings as raw text
-b, --browser [chromium|firefox|webkit|chrome|chrome-beta]

Which browser to use
--user-agent TEXT User-Agent header to use
--reduced-motion Emulate 'prefers-reduced-motion' media feature
--log-console Write console.log() to stderr
--fail Fail with an error code if a page returns an

HTTP error
--skip Skip pages that return HTTP errors
--help Show this message and exit.

22 Chapter 5. Scraping pages using JavaScript

CHAPTER

SIX

SAVING A WEB PAGE TO PDF

The shot-scraper pdf command saves a PDF version of a web page - the equivalent of using Print -> Save to
PDF in Chromium.

shot-scraper pdf https://datasette.io/

This will save to datasette-io.pdf. You can use -o to specify a filename:

shot-scraper pdf https://datasette.io/tutorials/learn-sql \
-o learn-sql.pdf

You can pass the path to a local file on disk instead of a URL:

shot-scraper pdf invoice.html -o invoice.pdf

6.1 shot-scraper pdf --help

Full --help for this command:

Usage: shot-scraper pdf [OPTIONS] URL

Create a PDF of the specified page

Usage:

shot-scraper pdf https://datasette.io/

Use -o to specify a filename:

shot-scraper pdf https://datasette.io/ -o datasette.pdf

You can pass a path to a file instead of a URL:

shot-scraper pdf invoice.html -o invoice.pdf

Options:
-a, --auth FILENAME Path to JSON authentication context file
-o, --output FILE
-j, --javascript TEXT Execute this JS prior to creating the PDF
--wait INTEGER Wait this many milliseconds before taking the

(continues on next page)

23

shot-scraper documentation, Release 1.1.1

(continued from previous page)

screenshot
--media-screen Use screen rather than print styles
--landscape Use landscape orientation
--format [Letter|Legal|Tabloid|Ledger|A0|A1|A2|A3|A4|A5|A6]

Which standard paper size to use
--width TEXT PDF width including units, e.g. 10cm
--height TEXT PDF height including units, e.g. 10cm
--scale FLOAT RANGE Scale of the webpage rendering [0.1<=x<=2.0]
--print-background Print background graphics
--log-console Write console.log() to stderr
--fail Fail with an error code if a page returns an

HTTP error
--skip Skip pages that return HTTP errors
--help Show this message and exit.

24 Chapter 6. Saving a web page to PDF

CHAPTER

SEVEN

DUMPING THE HTML OF A PAGE

The shot-scraper html command dumps out the final HTML of a page after all JavaScript has run.

shot-scraper html https://datasette.io/

Use -o filename.html to write the output to a file instead of displaying it.

shot-scraper html https://datasette.io/ -o index.html

Add --javascript SCRIPT to execute custom JavaScript before taking the HTML snapshot.

shot-scraper html https://datasette.io/ \
--javascript "document.querySelector('h1').innerText = 'Hello, world!'"

7.1 Retrieving the HTML for a specific element

You can use the -s SELECTOR option to capture just the HTML for one specific element on the page, identified using
a CSS selector:

shot-scraper html https://datasette.io/ -s h1

This outputs:

<h1>

</h1>

7.2 shot-scraper html --help

Full --help for this command:

Usage: shot-scraper html [OPTIONS] URL

Output the final HTML of the specified page

Usage:

shot-scraper html https://datasette.io/
(continues on next page)

25

shot-scraper documentation, Release 1.1.1

(continued from previous page)

Use -o to specify a filename:

shot-scraper html https://datasette.io/ -o index.html

Options:
-a, --auth FILENAME Path to JSON authentication context file
-o, --output FILE
-j, --javascript TEXT Execute this JS prior to saving the HTML
-s, --selector TEXT Return outerHTML of first element matching

this CSS selector
--wait INTEGER Wait this many milliseconds before taking the

snapshot
--log-console Write console.log() to stderr
-b, --browser [chromium|firefox|webkit|chrome|chrome-beta]

Which browser to use
--user-agent TEXT User-Agent header to use
--fail Fail with an error code if a page returns an

HTTP error
--skip Skip pages that return HTTP errors
--help Show this message and exit.

26 Chapter 7. Dumping the HTML of a page

CHAPTER

EIGHT

DUMPING OUT AN ACCESSIBILITY TREE

The shot-scraper accessibility command dumps out the Chromium accessibility tree for the provided URL, as
JSON:

shot-scraper accessibility https://datasette.io/

Use -o filename.json to write the output to a file instead of displaying it.

Add --javascript SCRIPT to execute custom JavaScript before taking the snapshot.

8.1 shot-scraper accessibility --help

Full --help for this command:

Usage: shot-scraper accessibility [OPTIONS] URL

Dump the Chromium accessibility tree for the specifed page

Usage:

shot-scraper accessibility https://datasette.io/

Options:
-a, --auth FILENAME Path to JSON authentication context file
-o, --output FILENAME
-j, --javascript TEXT Execute this JS prior to taking the snapshot
--timeout INTEGER Wait this many milliseconds before failing
--log-console Write console.log() to stderr
--fail Fail with an error code if a page returns an HTTP error
--skip Skip pages that return HTTP errors
--help Show this message and exit.

27

shot-scraper documentation, Release 1.1.1

28 Chapter 8. Dumping out an accessibility tree

CHAPTER

NINE

USING SHOT-SCRAPER WITH GITHUB ACTIONS

shot-scraper was designed with GitHub Actions for screenshot automation in mind.

9.1 shot-scraper-template

The shot-scraper-template template repository can be used to quickly create your own GitHub repository with GitHub
Actions configured to take screenshots of a page and write it back to the repository. Read Instantly create a GitHub
repository to take screenshots of a web page for details.

9.2 Building a workflow from scratch

This Actions workflow can be used to install shot-scraper and its dependencies, take screenshots defined in the
shots.yml file in that repository and then write the resulting screenshots back to the same repository:

name: Take screenshots

on:
push:
workflow_dispatch:

permissions:
contents: write

jobs:
shot-scraper:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.10
uses: actions/setup-python@v3
with:
python-version: "3.10"

- uses: actions/cache@v3
name: Configure pip caching
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip

- name: Cache Playwright browsers
(continues on next page)

29

https://github.com/simonw/shot-scraper-template
https://simonwillison.net/2022/Mar/14/shot-scraper-template/
https://simonwillison.net/2022/Mar/14/shot-scraper-template/

shot-scraper documentation, Release 1.1.1

(continued from previous page)

uses: actions/cache@v3
with:
path: ~/.cache/ms-playwright/
key: ${{ runner.os }}-playwright

- name: Install dependencies
run: |

pip install shot-scraper
shot-scraper install

- name: Take shots
run: |

shot-scraper multi shots.yml
- name: Commit and push
run: |-

git config user.name "Automated"
git config user.email "actions@users.noreply.github.com"
git add -A
timestamp=$(date -u)
git commit -m "${timestamp}" || exit 0
git pull --rebase
git push

The actions/cache@v3 steps set up caching, so your workflow will only download and install the necessary software
the very first time it runs.

9.3 Optimizing PNGs using Oxipng

You can losslessy compress the PNGs generated using shot-scraper by running them through Oxipng. Add the
following steps to the beginning of your workflow to install Oxing:

- name: Cache Oxipng
uses: actions/cache@v3
with:
path: ~/.cargo/
key: ${{ runner.os }}-cargo

- name: Install Oxipng if it is not installed
run: |

which oxipng || cargo install oxipng

Then after running shot-scraper add this step to compress the images:

- name: Optimize PNGs
run: |-

oxipng -o 4 -i 0 --strip safe *.png

simonw/datasette-screenshots is an example of a repository that uses this pattern.

See Optimizing PNGs in GitHub Actions using Oxipng for more on how this works.

30 Chapter 9. Using shot-scraper with GitHub Actions

https://github.com/actions/cache
https://github.com/shssoichiro/oxipng
https://github.com/simonw/datasette-screenshots
https://til.simonwillison.net/github-actions/oxipng

CHAPTER

TEN

CONTRIBUTING

To contribute to this tool, first checkout the code. Then create a new virtual environment:

cd shot-scraper
python -m venv venv
source venv/bin/activate

Or if you are using pipenv:

pipenv shell

Now install the dependencies and test dependencies:

pip install -e '.[test]'

Then you’ll need to install the Playwright browsers too:

shot-scraper install

To run the tests:

pytest

Some of the tests exercise the CLI utility directly. Run those like so:

tests/run_examples.sh

10.1 Documentation

Documentation for this project uses MyST - it is written in Markdown and rendered using Sphinx.

To build the documentation locally, run the following:

cd docs
pip install -r requirements.txt
make livehtml

This will start a live preview server, using sphinx-autobuild.

The CLI --help examples in the documentation are managed using Cog. Update those files like this:

31

https://myst-parser.readthedocs.io/
https://pypi.org/project/sphinx-autobuild/
https://github.com/nedbat/cog

shot-scraper documentation, Release 1.1.1

cog -r docs/*.md

10.2 Tweeting the release notes

After pushing a release, I use the following to create a screenshot of the release notes to use in a tweet:

shot-scraper https://github.com/simonw/shot-scraper/releases/tag/0.15 \
--selector '.Box-body' --width 700 \
--retina

Example tweet.

32 Chapter 10. Contributing

https://twitter.com/simonw/status/1569431710345089024

CHAPTER

ELEVEN

SHOT-SCRAPER

A command-line utility for taking automated screenshots of websites

For background on this project see shot-scraper: automated screenshots for documentation, built on Playwright.

11.1 Documentation

• Full documentation for shot-scraper

• Tutorial: Automating screenshots for the Datasette documentation using shot-scraper

• Release notes

11.2 Get started with GitHub Actions

To get started without installing any software, use the shot-scraper-template template to create your own GitHub repos-
itory which takes screenshots of a page using shot-scraper. See Instantly create a GitHub repository to take screen-
shots of a web page for details.

11.3 Quick installation

You can install the shot-scraper CLI tool using pip:

pip install shot-scraper
Now install the browser it needs:
shot-scraper install

33

https://pypi.org/project/shot-scraper/
https://github.com/simonw/shot-scraper/releases
https://github.com/simonw/shot-scraper/actions?query=workflow%3ATest
https://simonwillison.net/2022/Mar/10/shot-scraper/
https://shot-scraper.datasette.io/
https://simonwillison.net/2022/Oct/14/automating-screenshots/
https://github.com/simonw/shot-scraper/releases
https://github.com/simonw/shot-scraper-template
https://simonwillison.net/2022/Mar/14/shot-scraper-template/
https://simonwillison.net/2022/Mar/14/shot-scraper-template/
https://pip.pypa.io/

shot-scraper documentation, Release 1.1.1

11.4 Taking your first screenshot

You can take a screenshot of a web page like this:

shot-scraper https://datasette.io/

This will create a screenshot in a file called datasette-io.png.

Many more options are available, see Taking a screenshot for details.

11.5 Examples

• The shot-scraper-demo repository uses this tool to capture recently spotted owls in El Granada, CA according to
this page, and to generate an annotated screenshot illustrating a Datasette feature as described in my blog.

• The Datasette Documentation uses screenshots taken by shot-scraper running in the simonw/datasette-
screenshots GitHub repository, described in detail in Automating screenshots for the Datasette documentation
using shot-scraper.

• Ben Welsh built @newshomepages, a Twitter bot that uses shot-scraper and GitHub Actions to take screen-
shots of news website homepages and publish them to Twitter. The code for that lives in palewire/news-
homepages.

• scrape-hacker-news-by-domain uses shot-scraper javascript to scrape a web page. See Scraping web
pages from the command-line with shot-scraper for details of how this works.

34 Chapter 11. shot-scraper

https://shot-scraper.datasette.io/en/stable/screenshots.html
https://github.com/simonw/shot-scraper-demo
https://www.owlsnearme.com/?place=127871
https://simonwillison.net/2022/Mar/10/shot-scraper/#a-complex-example
https://docs.datasette.io/en/latest/
https://github.com/simonw/datasette-screenshots
https://github.com/simonw/datasette-screenshots
https://simonwillison.net/2022/Oct/14/automating-screenshots/
https://simonwillison.net/2022/Oct/14/automating-screenshots/
https://twitter.com/newshomepages
https://github.com/palewire/news-homepages
https://github.com/palewire/news-homepages
https://github.com/simonw/scrape-hacker-news-by-domain
https://simonwillison.net/2022/Mar/14/scraping-web-pages-shot-scraper/
https://simonwillison.net/2022/Mar/14/scraping-web-pages-shot-scraper/

	Installation
	shot-scraper install --help

	Taking a screenshot
	Adjusting the browser width and height
	Screenshotting a specific area with CSS selectors
	Specifying elements using JavaScript filters
	Waiting for a delay
	Waiting until a specific condition
	Executing custom JavaScript
	Using JPEGs instead of PNGs
	Retina images
	Interacting with the page
	Logging all requests
	Taking screenshots of local HTML files
	Tips for executing JavaScript
	Viewing console.log() output
	shot-scraper shot --help

	Websites that need authentication
	shot-scraper auth --help

	Taking multiple screenshots
	shot-scraper multi --help

	Scraping pages using JavaScript
	Running more than one statement
	Using async/await
	Running JavaScript from a file
	Using this for automated tests
	Example: Extracting page content with Readability.js
	shot-scraper javascript –help

	Saving a web page to PDF
	shot-scraper pdf --help

	Dumping the HTML of a page
	Retrieving the HTML for a specific element
	shot-scraper html --help

	Dumping out an accessibility tree
	shot-scraper accessibility --help

	Using shot-scraper with GitHub Actions
	shot-scraper-template
	Building a workflow from scratch
	Optimizing PNGs using Oxipng

	Contributing
	Documentation
	Tweeting the release notes

	shot-scraper
	Documentation
	Get started with GitHub Actions
	Quick installation
	Taking your first screenshot
	Examples

